(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△C;平移△ABC,若A的对应点的坐标为(0,-4),画出平移后对应的△;
(2)若将△C绕某一点旋转可以得到△ , 请直接写出旋转中心的坐标;
(3)在轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.
解:x2﹣6x=1 …①
x2﹣6x+9=1 …②
(x﹣3)2=1 …③
x﹣3=±1 …④
x1=4,x2=2 …⑤
(1)小明解方程的方法是 .
(A)直接开平方法 (B)因式分解法 (C)配方法 (D)公式法
他的求解过程从第 步开始出现错误.
(2)解这个方程.
(1)求抛物线的解析式;
(2)点P为抛物线上一点,且点P在AB的下方,设点P的横坐标为m.
①试求当m为何值时,△PAB的面积最大;
②当△PAB的面积最大时,过点P作x轴的垂线PD,垂足为点D,问在直线PD上否存在点Q,使△QBC为直角三角形?若存在,直接写出符合条件的Q的坐标若不存在,请说明理由.
(1)求抛物线的表达式;
(2)在斜坡OA上的B点有一棵树,B点的横坐标为3,树高为7,小球M能否飞过这棵树?通过计算说明理由;
(3)求小球M在飞行的过程中离斜坡OA的最大高度.