当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

河北省2024年中考数学试卷

更新时间:2024-07-09 浏览次数:27 类型:中考真卷
一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)
  • 1. 如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )

    A . B . C . D .
  • 2. 下列运算正确的是( )
    A . a7a3a4 B . 3a2•2a2=6a2 C . (﹣2a3=﹣8a3 D . a4÷a4a
  • 3. 如图,ADBC交于点O , △ABO和△CDO关于直线PQ对称,点AB的对称点分别是点CD . 下列不一定正确的是( )

    A . ADBC B . ACPQ C . ABO≌△CDO D . ACBD
  • 4. 下列数中,能使不等式5x﹣1<6成立的x的值为( )
    A . 1 B . 2 C . 3 D . 4
  • 5. 观察图中尺规作图的痕迹,可得线段BD一定是△ABC的( )

    A . 角平分线 B . 高线 C . 中位线 D . 中线
  • 6. 如图是由11个大小相同的正方体搭成的几何体,它的左视图是( )

    A . B . C . D .
  • 7. 节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x度,则能使用y天.下列说法错误的是( )
    A . x=5,则y=100 B . y=125,则x=4 C . x减小,则y也减小 D . x减小一半,则y增大一倍
  • 8. 若ab是正整数,且满足 , 则ab的关系正确的是( )
    A . a+3=8b B . 3a=8b C . a+3=b8 D . 3a=8+b
  • 9. 淇淇在计算正数a的平方时,误算成a与2的积,求得的答案比正确答案小1,则a=( )
    A . 1 B . ﹣1 C . +1 D . 1或+1
  • 10. 下面是嘉嘉作业本上的一道习题及解答过程:

    已知:如图,△ABC中,ABACAE平分△ABC的外角∠CAN , 点MAC的中点,连接BM并延长交AE于点D , 连接CD

    求证:四边形ABCD是平行四边形.

    证明:∵ABAC , ∴∠ABC=∠3.

    ∵∠CAN=∠ABC+∠3,∠CAN=∠1+∠2,∠1=∠2,

    ∴①    ▲    

    又∵∠4=∠5,MAMC

    ∴△MAD≌△MCB(②    ▲    ).

    MDMB . ∴四边形ABCD是平行四边形.

    若以上解答过程正确,①,②应分别为( )

    A . ∠1=∠3,AAS B . ∠1=∠3,ASA C . ∠2=∠3,AAS D . ∠2=∠3,ASA
  • 11. 直线l与正六边形ABCDEF的边ABEF分别相交于点MN , 如图所示,则α+β=( )

    A . 115° B . 120° C . 135° D . 144°
  • 12. 在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是( )

    A . A B . B C . C D . D
  • 13. 已知A为整式,若计算的结果为 , 则A=( )
    A . x B . y C . x+y D . xy
  • 14. 扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为120°时,扇面面积为S , 该折扇张开的角度为n°时,扇面面积为Sn , 若m , 则mn关系的图象大致是( )

    A . B . C . D .
  • 15. “铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示132×23,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是( )

    A . “20”左边的数是16 B . “20”右边的“■”表示5 C . 运算结果小于6000 D . 运算结果可以表示为4100a+1025
  • 16. 平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.

    例:“和点”P(2,1)按上述规则连续平移3次后,到达点P3(2,2),其平移过程如下:

    若“和点”Q按上述规则连续平移16次后,到达点Q16(﹣1,9),则点Q的坐标为( )

    A . (6,1)或(7,1) B . (15,﹣7)或(8,0) C . (6,0)或(8,0) D . (5,1)或(7,1)
二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)
  • 17. 某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为
  • 18. 已知abn均为正整数.
    1. (1) 若nn+1,则n
    2. (2) 若n﹣1<nnn+1,则满足条件的a的个数总比b的个数少个.
  • 19. 如图,△ABC的面积为2,ADBC边上的中线,点AC1C2C3是线段CC4的五等分点,点AD1D2是线段DD3的四等分点,点A是线段BB1的中点.

    1. (1) △AC1D1的面积为
    2. (2) △B1C4D3的面积为
三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)
  • 20. 如图,有甲、乙两条数轴.甲数轴上的三点ABC所对应的数依次为﹣4,2,32,乙数轴上的三点DEF所对应的数依次为0,x , 12.

    1. (1) 计算ABC三点所对应的数的和,并求的值;
    2. (2) 当点A与点D上下对齐时,点BC恰好分别与点EF上下对齐,求x的值.
  • 21. 甲、乙、丙三张卡片正面分别写有a+b , 2a+bab , 除正面的代数式不同外,其余均相同.
    1. (1) 将三张卡片背面向上并洗匀,从中随机抽取一张,当a=1,b=﹣2时,求取出的卡片上代数式的值为负数的概率;
    2. (2) 将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.

      第一次

      第二次

      a+b

      2a+b

      ab

      a+b

      2a+2b

      2a

      2a+b

      ab

      2a

  • 22. 中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P恰好看到一颗星星,此时淇淇距窗户的水平距离BQ=4m , 仰角为α;淇淇向前走了3m后到达点D , 透过点P恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ的距离ABCD=1.6m , 点PBQ的距离PQ=2.6mAC的延长线交PQ于点E . (注:图中所有点均在同一平面)

    1. (1) 求β的大小及tanα的值;
    2. (2) 求CP的长及sin∠APC的值.
  • 23. 情境图1是由正方形纸片去掉一个以中心O为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.

    (说明:纸片不折叠,拼接不重叠无缝隙无剩余)

    操作嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.

    如图3,嘉嘉沿虚线EFGH裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:

    1. (1) 直接写出线段EF的长;
    2. (2) 直接写出图3中所有与线段BE相等的线段,并计算BE的长.

      探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.

      请你按照淇淇的说法设计一种方案:在图5所示纸片的BC边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段PQ)的位置,并直接写出BP的长.

  • 24. 某公司为提高员工的专业能力,定期对员工进行技能测试.考虑多种因素影响,需将测试的原始成绩x(分)换算为报告成绩y(分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下:

    当0≤xp时,

    px≤150时,

    (其中p是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)公司规定报告成绩为80分及80分以上(即原始成绩为pp以上)为合格.

    1. (1) 甲、乙的原始成绩分别为95分和130分,若p=100,求甲、乙的报告成绩;
    2. (2) 丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p的值;
    3. (3) 下表是该公司100名员工某次测试的原始成绩统计表:

      原始成绩(分)

      95

      100

      105

      110

      115

      120

      125

      130

      135

      140

      145

      150

      人数

      1

      2

      2

      5

      8

      10

      7

      16

      20

      15

      9

      5

      ①直接写出这100名员工原始成绩的中位数;

      ②若①中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.

  • 25. 已知⊙O的半径为3,弦MN=2 . △ABC中,∠ABC=90°,AB=3,BC=3 . 在平面上,先将△ABC和⊙O按图1位置摆放(点B与点N重合,点A在⊙O上,点C在⊙O内),随后移动△ABC , 使点B在弦MN上移动,点A始终在⊙O上随之移动.设BNx

    1. (1) 当点B与点N重合时,求劣弧的长;
    2. (2) 当OAMN时,如图2,求点BOA的距离,并求此时x的值;
    3. (3) 设点OBC的距离为d

      ①当点A在劣弧上,且过点A的切线与AC垂直时,求d的值;

      ②直接写出d的最小值.

  • 26. 如图,抛物线C1yax2﹣2x过点(4,0),顶点为Q . 抛物线C2y=﹣xt2+t2﹣2(其中t为常数,且t>2),顶点为P

    1. (1) 直接写出a的值和点Q的坐标.
    2. (2) 嘉嘉说:无论t为何值,将C1的顶点Q向左平移2个单位长度后一定落在C2上.

      淇淇说:无论t为何值,C2总经过一个定点.

      请选择其中一人的说法进行说理.

    3. (3) 当t=4时,

      ①求直线PQ的解析式;

      ②作直线lPQ , 当lC2的交点到x轴的距离恰为6时,求lx轴交点的横坐标.

    4. (4) 设C1C2的交点AB的横坐标分别为xAxB , 且xAxB , 点MC1上,横坐标为m(2≤mxB).点NC2上,横坐标为nxAnt),若点M是到直线PQ的距离最大的点,最大距离为d , 点N到直线PQ的距离恰好也为d , 直接用含tm的式子表示n

微信扫码预览、分享更方便

试卷信息